Q	uesti	on	Answer	Marks	Guidance
1	(a)		Because hydrocarbons have different boiling points ✓	1	ALLOW each fraction / component / substance / molecule / compound / fuel has a different boiling temperatures ALLOW condense at different temperatures ALLOW because van der Waals' forces differ with molecular size IGNORE references to volatility different strength of intermolecular forces is not sufficient
	(b)		Any one from:	1	ASSUME 'they' or 'it' refers to biofuels
			Bio-fuels produce less carbon dioxide (overall) OR petrol or diesel produce more carbon dioxide (overall) ✓		ALLOW bio-fuels are (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ALLOW lower carbon footprint
			Bio-fuels are renewable OR petrol and diesel are non-renewable ✓		ALLOW plants are a renewable resource / crude oil non-renewable resource / bio-diesel is more sustainable / diesel is not sustainable / petrol and diesel are made from a finite resource / petrol and diesel will run out / bio-fuels will not run out
			Allows crude oil to be used to make other products OR petrochemicals (rather than petrol) OR Save crude oil OR no risk of large scale pollution from exploitation of crude oil		ALLOW decrease the need for fossil fuels
			✓ Viarge scale polition from exploitation of crude oil		IGNORE can be used by diesel powered cars with or without any conversion
	(c)	(i)		1	The answer must refer to carbon–carbon bonds or the carbon chain
			Idea that carbon–carbon bonds can break anywhere ✓		ALLOW (carbon) chain can break anywhere Bonds can break anywhere is not sufficient

C	uesti	on	Answer	Marks	Guidance
1	(c)	(ii)	Correct identification of $C_2H_3^+$ for $m/z = 27 \checkmark$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW CHCH ₂ ⁺ DO NOT ALLOW C ₂ H ₃ (the positive charge is essential) OR CCH ₃ ⁺
			Some indication to explain how the identity of propene was deduced OR further analysis of the mass spectrum ✓		ALLOW Molecular ion/M ⁺ /M is $m/z = 42$ OR $m/z = 15$ is CH ₃ ALLOW mass spectrum shows $M_r = 42$ ALLOW idea that alkane C ₁₂ H ₂₆ – C ₃ H ₈ can only give 3C ₃ H ₆
			Correct identification of the alkene as C ₃ H ₆ OR propene ✓		ALLOW prop-1-ene An incorrect formula for the alkene in the equation will not contradict this answer
			$C_{12}H_{26} \rightarrow C_3H_8 + 3C_3H_6 \checkmark$		ALLOW C ₃ H ₆ from its use in an equation even if the equation is wrong providing there has not been an attempt elsewhere to identify the alkene
					ALLOW correct displayed OR structural OR skeletal OR molecular formulae in the equation

Question	Answer	Marks	Guidance
1 (d)	React with bromine OR $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2 \checkmark$	9	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW reactants even from incorrect equations ALLOW reactants or conditions over the arrow ALLOW Br ₂ mark from the mechanism even if the mechanism is incorrect IGNORE conditions unless they would lead to a different reaction with ethene
	React with hydrogen bromide OR C_2H_4 + HBr \rightarrow C_2H_5 Br \checkmark		IGNORE conditions unless they would lead to a different reaction with ethene
	React with steam OR heat with water OR $C_2H_4 + H_2O(g)$ $\rightarrow C_2H_5OH \checkmark$ acid (catalyst) \checkmark		ALLOW temperature range between 100–400 °C if quoted IGNORE reference to pressure IGNORE hydrolysis Hydration is not sufficient but DO NOT ALLOW hydrogenation ALLOW H ₂ SO ₄ OR H ₃ PO ₄ OR H ⁺ DO NOT ALLOW HC I, HBr etc. ALLOW two stage process e.g. react with HBr one mark followed by KOH(aq) one mark

Electrophilic addition ✓ Curly arrow from double bond to attack Br ⁵⁺ of Br–Br and breaking of Br–Br bond ✓ Curly arrow must start from the double bond and not a carbon atom and go the Br ⁵⁺ ; other curly arrow must start from Br–Br bond. ALLOW attack of Br–Br if dipoles not shown DO NOT ALLOW attack of Br ⁵⁻ Dipole must be partial charge and not full charge DO NOT ALLOW any other partial charges eg on the double bond Correct carbonium / carbocation ion drawn ✓ Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) All atoms in the carbocation must be shown Br⁻ curly arrow must come from one lone pair on Br⁻ ion OR
from minus sign on Br ion Lone pair does not need to be shown on Br ion ALLOW mechanism which goes via a cyclic bromonium ion instead of the carbocation SEE EXTRA ADVICE ABOUT CURLY ARROWS ON PAG 30

Question	Answer	Marks	Guidance
1 (e)	Correct shape ✓	3	IGNORE any name of shape given
	H		ALLOW 115–125° ALLOW even if it is the C–C–H shown on a diagram.
	120° ✓ Three areas of electron density repel each other ✓		ALLOW three or four electron pairs repel OR three or four bonds repel IGNORE does not have any lone pairs DO NOT ALLOW atoms repel / electrons repel DO NOT ALLOW has lone pair which repels more
(f) (i)	H_3C H $C \longrightarrow C$ H $CH_2CH_3 \checkmark$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
(ii)	CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ C———————————————————————————————————	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH ₃ and C ₂ H ₅ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group IGNORE any brackets drawn ALLOW two or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) 'End bonds' MUST be shown and can be dotted IGNORE <i>n</i>
	Total	21	

C	uesti	ion	Answer		Guidance
2	(a)		Atom economy = $\frac{\text{sum of (all) } M_r \text{ of desired product(s)}}{\text{sum of (all) } M_r \text{ of (all) products}}$	1	ALLOW Atom economy = sum of (all) M _r of desired product(s) sum of (all) M _r of (all) reactants ALLOW for the numerator: 'sum of' to be crossed out and replaced by 'molecular mass of the desired product(s)' ALLOW for the denominator: 'sum of molecular masses of all products'
	(b)	(i)	Process 5 ✓	1	ALLOW $C_8H_{18} \rightarrow C_2H_4 + C_6H_{14}$
		(ii)	Process 1 ✓	1	ALLOW CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ → (CH ₃) ₂ CHCH ₂ CH ₂ CH(CH ₃) ₂
		(iii)	Process 2 ✓ water is a waste product ✓	2	ALLOW CH ₃ CH ₂ OH + CH ₃ COOH → CH ₃ COOCH ₂ CH ₃ + H ₂ O ALLOW it is a condensation reaction ALLOW water is a by-product / water is a non-desirable product ALLOW process 2 has an 83% atom economy IGNORE it forms more than one product / it forms a waste product
	(c)	(i)	Less waste products OR better sustainability OR get 100% atom economy ✓ (Stops) greenhouse gas emitted OR (stops) gas that (may) cause global warming ✓	2	ALLOW no waste products / there is no longer a waste product ALLOW increase atom economy

Question	Answer	Mark	Guidance	
Question (c) (ii)	High percentage yield with a simple reason e.g. because the aim is to manufacture ethanol; to reduce waste; increases sustainability ✓ BUT High percentage yield because there is very efficient conversion from reactant to product OR to reduce the waste of starting materials ✓ OR High atom economy with a simple reason e.g. because it is cheaper or makes less harmful products; to reduces waste; increases sustainability ✓ BUT	Mark 2	No marks for just percentage yield or for atom economy. Marks are for the quality of the explanation Marks are awarded as follows One mark – a simple reason that is not fully correct whether a choice has been made or not Two marks – a choice must be made and the reason must be correct	
	High atom economy to reduce the amount of waste products OR less by products OR more desired product ✓✓			
	Total	9		

Q	uesti	on	Answer	Mark	Guidance
3	(a)		Compound of hydrogen and carbon only ✓	1	ALLOW contains hydrogen and carbon only DO NOT ALLOW 'it contains hydrogen and carbon' DO NOT ALLOW a mixture of hydrogen and carbon only
	(b)		F ✓	1	ALLOW cyclobutane
	(c)		C₅H ₁₀ O ✓	1	ALLOW any order IGNORE structural or displayed formula
	(d)		D and E OR	1	ALLOW pentanal and pentan(-3-)one
			F and G ✓		ALLOW cyclobutane and but(-2-)ene Award mark if both pairs are given
	(e)	(i)	Tetrahedral ✓ Four (single) bonds (around carbon atom) OR four (single) bond pairs (around carbon atom) OR (carbon) bonded to four groups ✓	2	IGNORE incorrect bond angle If shape is not given, explanation mark can be credited If shape is incorrect, explanation mark cannot be credited
		(ii)	Trigonal planar ✓	1	ALLOW planar triangle IGNORE if incorrect bond angle is stated
	(f)	(i)	G√	1	ALLOW but-2-ene
		(ii)	Non rotating (carbon–carbon) double bond ✓ Each carbon atom of the double bond attached to (two) different groups/atoms ✓	2	

Question	Answer	Mark	Guidance
(g)		10	ANNOTATE ANSWER WITH TICKS AND CROSSES
	Equation $C_3H_7X + KOH \rightarrow C_3H_7OH + KX$ OR $C_3H_7X + OH^- \rightarrow C_3H_7OH + X^- \checkmark$		$X = Br \text{ or } CI$ ALLOW molecular, structural, displayed or skeletal formula in equation ALLOW $C_3H_7X + H_2O \rightarrow C_3H_7OH + HX$ ALLOW equation from the mechanism IGNORE incorrect equations
	Structure of product		ALLOW structural, displayed or skeletal formula of product if seen ONCE in equation, mechanism or drawn out
	CH ₃ CH ₂ CH ₂ OH ✓		
	Reaction mechanism		If two mechanism shown award marks from the mechanism that gives the higher mark
	QWC - nucleophilic substitution ✓		C_2H_5 — $C_5^{\delta+}$ — $Hal^{\delta-}$
	dipole shown on C–Hal bond, $C^{\delta+}$ and $Hal^{\delta-}$		Н
	curly arrow from HO⁻ to carbon atom of C–Hal bond ✓		C_2H_5 — C — OH + Hal^-
	curly arrow from C–Hal bond to the halogen atom ✓		H
			The curly arrow must start from the oxygen lone pair or the negative charge on the oxygen of $^-$ OH ion No need to show lone pair on the oxygen atom

Question	Answer	Mark	Guidance
(g)			ALLOW S _N 1 mechanism
			dipole shown on C–Hal bond, C ^{δ+} and Hal ^{δ−} ✓
	Type of bond fission		curly arrow from C–Hal bond to the halogen atom ✓ curly arrow from OH⁻ to correct carbocation ✓
	QWC - heterolytic ✓		daily arrow from our to correct carbonation
	Reasons for the difference in rate of hydrolysis		
	1-bromopropane reacts faster (than 1-chloropropane) OR B reacts faster (than C) OR C−Br reacts faster ✓		IGNORE bromine reacts faster than chlorine ALLOW ora
	Because the C–Br bond is weaker OR C–Br has a lower bond enthalpy		ALLOW less energy to break C-Br
	OR C–Br bond is longer ✓		ALLOW ora
	C–Br is more easy to break ✓		ALLOW ora
(h)	With H ₂	3	ALLOW methylcyclohexane
	With HBr		ALLOW 1-bromo-1-methylcyclohexane
	Br✓		ALLOW 1-bromo-2-methylcyclohexane ALLOW 2-bromo-1-methylcyclohexane
	Total	23	